Hash-based Signatures

Andreas Hülsing

Summer School on Post-Quantum Cryptography
June 2017, TU Eindhoven
Post-Quantum Signatures

Lattice, MQ, Coding

⚠️ Signature and/or key sizes

⚠️ Runtimes

⚠️ Secure parameters

\[
y_1 = x_1^2 + x_1 x_2 + x_1 x_4 + x_3 \\
y_2 = x_3^2 + x_2 x_3 + x_2 x_4 + x_1 + 1 \\
y_3 = ...
\]
Hash-based Signature Schemes

[Mer89]

- Post quantum
- Only secure hash function
- Security well understood
- Fast
RSA — DSA — EC-DSA...

- RSA, DH, SVP, MQ, ...
- Intractability Assumption
- Cryptographic hash function
- Digital signature scheme
Hash function families
(Hash) function families

- $H_n := \{ h_k : \{0,1\}^{m(n)} \rightarrow \{0,1\}^n \}$
- $m(n) \geq n$
- „efficient“
One-wayness

\[H_n := \{ h_k : \{0,1\}^{m(n)} \rightarrow \{0,1\}^n \} \]

\[
\begin{align*}
 & h_k \leftarrow H_n \\
 & x \leftarrow \{0,1\}^{m(n)} \\
 & y_c \leftarrow h_k(x)
\end{align*}
\]

Success if \(h_k(x^*) = y_c \)
Collision resistance

\[H_n := \{ h_k : \{0,1\}^{m(n)} \rightarrow \{0,1\}^n \} \]

\[h_k \leftarrow H_n \]

Success if

\[h_k(x_1^*) = h_k(x_2^*) \] and
\[x_1^* \neq x_2^* \]
Second-preimage resistance

$$H_n := \{h_k : \{0,1\}^{m(n)} \rightarrow \{0,1\}^n\}$$

$\$ $\$ $\$ $\$

$h_k \leftarrow H_n$

$x_c \leftarrow \{0,1\}^{m(n)}$

Success if

$h_k(x_c) = h_k(x^*)$ and

$x_c \neq x^*$
Undetectability

\[H_n := \{ h_k : \{0,1\}^{m(n)} \rightarrow \{0,1\}^n \} \]

\[h_k \leftarrow H_n \]

\[b \leftarrow \{0,1\} \]

\textbf{If} \(b = 1 \)

\[x \leftarrow \{0,1\}^{m(n)} \]

\[y_c \leftarrow h_k(x) \]

\textbf{else}

\[y_c \leftarrow \{0,1\}^n \]
Pseudorandomness

\[H_n := \{ h_k: \{0,1\}^{m(n)} \to \{0,1\}^n \} \]
Generic security

• „Black Box“ security (best we can do without looking at internals)
 • For hash functions: Security of random function family

• (Often) expressed in #queries (query complexity)

• Hash functions not meeting generic security considered insecure
Generic Security - OWF

Classically:

• No query: Output random guess

 \(Succ_A^{OW} = \frac{1}{2^n} \)

• One query: Guess, check, output new guess

 \(Succ_A^{OW} = \frac{2}{2^n} \)

• q-queries: Guess, check, repeat q-times, output new guess

 \(Succ_A^{OW} = \frac{q+1}{2^n} \)

• Query bound: \(\Theta(2^n) \)
Generic Security - OWF

Quantum:
• More complex
• Reduction from quantum search for random H
• Know lower & upper bounds for quantum search!

• Query bound: $\Theta(2^{n/2})$

• Upper bound uses variant of Grover

(Disclaimer: Currently only proof for $2^m \gg 2^n$)
Generic Security

<table>
<thead>
<tr>
<th></th>
<th>OW</th>
<th>SPR</th>
<th>CR</th>
<th>UD*</th>
<th>PRF*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>$\Theta(2^n)$</td>
<td>$\Theta(2^n)$</td>
<td>$\Theta(2^{n/2})$</td>
<td>$\Theta(2^n)$</td>
<td>$\Theta(2^n)$</td>
</tr>
<tr>
<td>Quantum</td>
<td>$\Theta(2^{n/2})$</td>
<td>$\Theta(2^{n/2})$</td>
<td>$\Theta(2^{n/3})$</td>
<td>$\Theta(2^{n/2})$</td>
<td>$\Theta(2^{n/2})$</td>
</tr>
</tbody>
</table>

* conjectured, no proof
Hash-function properties

- Collision-Resistance
- 2nd-Preimage-Resistance
- One-way
- Pseudorandom

Assumptions / Attacks:

- Stronger / easier to break
- Weaker / harder to break
Attacks on Hash Functions

- **MD5 Collisions (theo.)**
 - 2004

- **SHA1 Collisions (theo.)**
 - 2005

- **MD5 Collisions (practical!)**
 - 2008

- **SHA1 Collisions (practical!)**
 - 2017

MD5 & SHA-1
No (Second-) Preimage Attacks!

The timeline indicates the years when attacks were discovered.
Basic Construction
Lamport-Diffie OTS [Lam79]

Message $M = b_1, \ldots, b_m$, OWF H, $\ast = n$ bit
EU-CMA for OTS

Success if $M^* \neq M$ and $\text{Verify}(pk, \sigma^*, M^*) = \text{Accept}$
Security

Theorem:
If H is one-way then LD-OTS is one-time eu-cma-secure.
Reduction

Input: y_c, k

Set $H \leftarrow h_k$

Replace random $\text{pk}_{i,b}$
Reduction

Input: y_c, k

Set $H \leftarrow h_k$

Replace random $pk_{i,b}$

Adv. Message: $M = b_1, \ldots, b_m$
If $b_i = b$ return fail
else return $\text{Sign}(M)$
Reduction

Input: y_c, k
Set $H \leftarrow h_k$
Choose random $pk_{i,b}$

Forgery: $M^* = b_1^*, ..., b_m^*$, $\sigma = \sigma_1, ..., \sigma_m$
If $b_i \neq b$ return fail
Else return σ_i^*
Reduction - Analysis

Abort in two cases:

1. $b_i = b$

 probability $\frac{1}{2} : b$ is a random bit

2. $b_i^* \neq b$

 probability $1 - \frac{1}{m}$: At least one bit has to flip as $M^* \neq M$

Reduction succeeds with A’s success probability times $\frac{1}{2m}$.
Merkle’s Hash-based Signatures

\[\text{SIG} = (i=2, \text{OTS}, \circ, \circ, \circ) \]
Security

Theorem:
MSS is eu-cma-secure if OTS is a one-time eu-cma secure signature scheme and H is a random element from a family of collision resistant hash functions.
Reduction

Input: k, pk_{OTS}

1. Choose random $0 \leq i < 2^h$
2. Generate key pair using pk_{OTS} as ith OTS public key and $H \leftarrow h_k$
3. Answer all signature queries using sk or sign oracle (for index i)
4. Extract OTS-forgery or collision from forgery
Reduction (Step 4, Extraction)

Forgery: \((i^*, \sigma_{OTS}^*, pk_{OTS}^*, \text{AUTH})\)

1. If \(pk_{OTS}^*\) equals OTS pk we used for \(i^*\) OTS, we got an OTS forgery.
 • Can only be used if \(i^* = i\).

2. Else adversary used different OTS pk.
 • Hence, different leaves.
 • Still same root!
 • Pigeon-hole principle: Collision on path to root.
Winternitz-OTS
Recap LD-OTS [Lam79]

Message $M = b_1, \ldots, b_m$, $\text{OWF} \ H$

$\begin{align*}
&\text{SK} \\
&\begin{array}{c}
\text{sk}_{1,0} \\
\text{sk}_{1,1} \\
\vdots \\
\text{sk}_{m,0} \\
\text{sk}_{m,1}
\end{array} \\
&\begin{array}{c}
\text{H} \\
\text{H} \\
\vdots \\
\text{H} \\
\text{H}
\end{array} \\
&\begin{array}{c}
\text{PK} \\
\begin{array}{c}
\text{pk}_{1,0} \\
\text{pk}_{1,1} \\
\vdots \\
\text{pk}_{m,0} \\
\text{pk}_{m,1}
\end{array}
\end{array} \\
&\begin{array}{c}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{array} \\
&\begin{array}{c}
\text{Mux} \\
\text{Mux} \\
\vdots \\
\text{Mux}
\end{array} \\
&\begin{array}{c}
\text{Sig} \\
\text{sk}_{1,b_1} \\
\vdots \\
\text{sk}_{m,b_m}
\end{array}
\end{align*}$

$*$ = n bit
LD-OTS in MSS

\[\text{SIG} = (i=2, \text{文档}, \text{钥匙}, \text{文件}, \text{文件}, \text{钥匙}) \]

Verification:

1. Verify 📄
2. Verify authenticity of 🔍

We can do better!
Trivial Optimization

Message $M = b_1, \ldots, b_m$, OWF H

$\ast = n$ bit
Optimized LD-OTS in MSS

\[\text{SIG} = (i=2, X, \bigcirc, \bigcirc, \bigcirc) \]

Verification:

1. Compute from
2. Verify authenticity of

Steps 1 + 2 together verify
Let’s sort this

Message \(M = b_1, ..., b_m \), OWF \(H \)

SK: \(sk_1, ..., sk_m, sk_{m+1}, ..., sk_{2m} \)

PK: \(H(sk_1), ..., H(sk_m), H(sk_{m+1}), ..., H(sk_{2m}) \)

Encode \(M \): \(M' = M \| \neg M = b_1, ..., b_m, \neg b_1, ..., \neg b_m \)

(instead of \(b_1, \neg b_1, ..., b_m, \neg b_m \))

Sig: \(\text{sig}_i = \begin{cases}
 sk_i & , \text{if } b_i = 1 \\
 H(sk_i) & , \text{otherwise}
\end{cases} \)

Checksum with bad performance!
Optimized LD-OTS

Message $M = b_1, \ldots, b_m$, OWF H

SK: $sk_1, \ldots, sk_m, sk_{m+1}, \ldots, sk_{m+1+\log m}$

PK: $H(sk_1), \ldots, H(sk_m), H(sk_{m+1}), \ldots, H(sk_{m+1+\log m})$

Encode M: $M' = b_1, \ldots, b_m, \neg \sum_{1}^{m} b_i$

Sig: $\text{sig}_i = \begin{cases}
 sk_i, & \text{if } b_i = 1 \\
 H(sk_i), & \text{otherwise}
\end{cases}$

IF one b_i is flipped from 1 to 0, another b_j will flip from 0 to 1
Function chains

Function family: \(H_n := \{ h_k : \{0,1\}^n \rightarrow \{0,1\}^n \} \)

\(h_k \leftarrow H_n \)

Parameter \(w \)

Chain: \(c^i(x) = h_k(c^{i-1}(x)) = h_k \circ h_k \circ \ldots \circ h_k(x) \)

\(i \)-times

\(c^0(x) = x \)

\(c^1(x) = h_k(x) \)

\(c^{w-1}(x) \)
WOTS

Winternitz parameter w, security parameter n, message length m, function family H_n

Key Generation: Compute l, sample h_k

w

$\text{pk}_0 = c^{w-1}(sk_0)$

$\text{pk}_1 = c^{w-1}(sk_1)$

$\text{pk}_r = c^{w-1}(sk_r)$

$\text{pk}_{r+1} = c^{w-1}(sk_{r+1})$

\ldots

$\text{pk}_{r+w} = c^{w-1}(sk_{r+w})$

$\text{pk}_{r+w+1} = c^{w-1}(sk_{r+w+1})$

\ldots

$\text{pk}_{2w-1} = c^{w-1}(sk_{2w-1})$

$\text{pk}_{2w} = c^{w-1}(sk_{2w})$

$\text{pk}_{2w+1} = c^{w-1}(sk_{2w+1})$

\ldots

$\text{pk}_{3w-1} = c^{w-1}(sk_{3w-1})$
WOTS Signature generation

\[
c^0(\text{sk}_1) = \text{sk}_1
\]

\[
\sigma_1 = c^{b_1(\text{sk}_1)}
\]

Signature:
\[
\sigma = (\sigma_1, \ldots, \sigma_\ell)
\]

\[
c^0(\text{sk}_\ell) = \text{sk}_\ell
\]

\[
\sigma_\ell = c^{b_\ell(\text{sk}_\ell)}
\]

\[
\text{pk}_\ell = c^{w-1}(\text{sk}_\ell)
\]

\[
\text{pk}_j = c^{w-1}(\text{sk}_j)
\]
WOTS Signature Verification

Verifier knows: M, w

Signature: $\sigma = (\sigma_1, \ldots, \sigma_\ell)$
WOTS Function Chains

For $x \in \{0,1\}^n$ define $c^0(x) = x$ and

- **WOTS**: $c^i(x) = h_k(c^{i-1}(x))$
- **WOTS$^\$:** $c^i(x) = h_{c^{i-1}(x)}(r)$
- **WOTS$^+$**: $c^i(x) = h_k(c^{i-1}(x) \oplus r_i)$
Theorem (informally):

W-OTS is strongly unforgeable under chosen message attacks if H_n is a collision resistant family of undetectable one-way functions.

WOTSs is existentially unforgeable under chosen message attacks if H_n is a pseudorandom function family.

WOTS$^+$ is strongly unforgeable under chosen message attacks if H_n is a 2nd-preimage resistant family of undetectable one-way functions.
XMSS

Tree: Uses bitmasks

Leafs: Use binary tree with bitmasks

OTS: WOTS\(^+\)

Message digest: Randomized hashing

Collision-resilient

\(\rightarrow\) signature size halved
Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation
 (= Building first tree on each layer)
 $\Theta(2^h) \rightarrow \Theta(d*2^{h/d})$

-> Allows to reduce
 worst-case signing times
 $\Theta(h/2) \rightarrow \Theta(h/2d)$
Authentication path computation
TreeHash
(Mer89)
TreeHash

- TreeHash(v,i): Computes node on level v with leftmost descendant L_i
- Public Key Generation: Run TreeHash(h,0)
TreeHash

<table>
<thead>
<tr>
<th>TreeHash(v,i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Init Stack, N1, N2</td>
</tr>
<tr>
<td>2: For j = i to i+2^v-1 do</td>
</tr>
<tr>
<td>3: N1 = LeafCalc(j)</td>
</tr>
<tr>
<td>4: While N1.level() == Stack.top().level() do</td>
</tr>
<tr>
<td>5: N2 = Stack.pop()</td>
</tr>
<tr>
<td>6: N1 = ComputeParent(N2, N1)</td>
</tr>
<tr>
<td>7: Stack.push(N1)</td>
</tr>
<tr>
<td>8: Return Stack.pop()</td>
</tr>
</tbody>
</table>
TreeHash

TreeHash(v,i)
Efficiency?

Key generation: Every node has to be computed once.
 cost = 2^h leaves + 2^{h-1} nodes
 => optimal

Signature: One node on each level $0 \leq v < h$.
 cost 2^{h-1} leaves + $2^{h-1} - h$ nodes.

Many nodes are computed many times!
(e.g. those on level $v=h-1$ are computed 2^{h-1} times)
 -> Not optimal if state allowed
The BDS Algorithm

[BDS08]
Motivation
(for all Tree Traversal Algorithms)

No Storage:
Signature: Compute one node on each level $0 \leq v < h$.
Costs: $2^h - 1$ leaf + $2^h - 1 - h$ node computations.

Example: XMSS with SHA2-256 and $h = 20$ -> approx. 15min

Store whole tree: $2^h n$ bits.

Example: $h=20$, $n=256$; storage: 2^{28}bits = 32MB

Idea: Look for time-memory trade-off!
Use a State
Authentication Paths
Observation 1

Same node in authentication path is recomputed many times!

Node on level v is recomputed for 2^v successive paths.

Idea: Keep authentication path in state.

\Rightarrow Only have to update “new” nodes.

Result

Storage: h nodes

Time: $\sim h$ leaf + h node computations (average)

But: Worst case still $2^h - 1$ leaf + $2^h - 1 - h$ node computations!

\Rightarrow Keep in mind. To be solved.
Observation 2

When new left node in authentication path is needed, its children have been part of previous authentication paths.
Computing Left Nodes

\[v = 2 \]

\[\in A(i - 1) \quad \in A(i - 1 - 2^{v-1}) \]
Result

Storing $\left\lfloor \frac{h}{2} \right\rfloor$ nodes

all left nodes can be computed with one node computation / node
Observation 3

Right child nodes on high levels are most costly.

Computing node on level v requires 2^v leaf and 2^v-1 node computations.

Idea: Store right nodes on top k levels during key generation.

Result
Storage: 2^k-2 n bit nodes
Time: $\sim h-k$ leaf + h-k node computations (average)

Still: Worst case 2^{h-k-1} leaf + $2^{h-k-1}-(h-k)$ node computations!
Distribute Computation
Intuition

Observation:
- For every second signature only one leaf computation
- Average runtime: $\sim h-k$ leaf + $h-k$ node computations

Idea: Distribute computation to achieve average runtime in worst case.

Focus on distributing computation of leaves
TreeHash with Updates

TreeHash.init(v,i)

1: Init Stack, N1, N2, j=i, j_max = i+2^v-1
2: Exit

TreeHash.update()

1: If j <= j_max
2: N1 = LeafCalc(j)
3: While N1.level() == Stack.top().level() do
5: N2 = Stack.pop()
6: N1 = ComputeParent(N2, N1)
7: Stack.push(N1)
8: Set j = j+1
9: Exit

One leaf per update
Distribute Computation

Concept

- Run one TreeHash instance per level $0 \leq v < h-k$
- Start computation of next right node on level v when current node becomes part of authentication path.
- Use scheduling strategy to guarantee that nodes are finished in time.
- Distribute $(h-k)/2$ updates per signature among all running TreeHash instances
Distribute Computation

Worst Case Runtime

Before:
$2^{h-k}-1$ leaf and $2^{h-k}-1-(h-k)$ node computations.

With distributed computation:
$(h-k)/2 + 1$ leaf and $3(h-k-1)/2 + 1$ node computations.

Add. Storage
- Single stack of size $h-k$ nodes for all TreeHash instances.
- + One node per TreeHash instance.
= $2(h-k)$ nodes
BDS Performance

Storage:

\[3h + \left\lfloor \frac{h}{2} \right\rfloor - 3k - 2 + 2^k \text{ } n \text{ bit nodes} \]

Runtime:

\(\frac{(h-k)}{2} + 1 \) leaf and

\(3\frac{(h-k-1)}{2} + 1 \) node computations.
XMSS in practice
XMSS Internet-Draft
(draft-irtf-cfrg-xmss-hash-based-signatures)

• Protecting against multi-target attacks / tight security
 • n-bit hash => n bit security

• Small public key (2n bit)
 • At the cost of ROM for proving PK compression secure

• Function families based on SHA2

• Equal to XMSS-T [HRS16] up-to message digest
XMSS / XMSS-T Implementation

C Implementation, using OpenSSL [HRS16]

<table>
<thead>
<tr>
<th></th>
<th>Sign (ms)</th>
<th>Signature (kB)</th>
<th>Public Key (kB)</th>
<th>Secret Key (kB)</th>
<th>Bit Security classical/quantum</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMSS</td>
<td>3.24</td>
<td>2.8</td>
<td>1.3</td>
<td>2.2</td>
<td>236 / 118</td>
<td>h = 20, d = 1,</td>
</tr>
<tr>
<td>XMSS-T</td>
<td>9.48</td>
<td>2.8</td>
<td>0.064</td>
<td>2.2</td>
<td>256 / 128</td>
<td>h = 20, d = 1</td>
</tr>
<tr>
<td>XMSS</td>
<td>3.59</td>
<td>8.3</td>
<td>1.3</td>
<td>14.6</td>
<td>196 / 98</td>
<td>h = 60, d = 3,</td>
</tr>
<tr>
<td>XMSS-T</td>
<td>10.54</td>
<td>8.3</td>
<td>0.064</td>
<td>14.6</td>
<td>256 / 128</td>
<td>h = 60, d = 3</td>
</tr>
</tbody>
</table>

Intel(R) Core(TM) i7 CPU @ 3.50GHz
XMSS-T uses message digest from Internet-Draft
All using SHA2-256, w = 16 and k = 2
Open research topics

1. Message compression which
 • is collision-resilient,
 • provides tight provable security,
 • especially resists multi-target attacks (=> no eTCR)
 • => Has applications outside hash-based crypto!

2. Quantum query complexity for further properties
 • E.g. PRF, UD, aSec, ...

3. Quantum security of existing hash function constructions.
 • E.g. can classical attacks be improved (e.g. differential cryptanalysis)
 • Formal proofs (see recent works on collapsing hashes)
SPHINCS
About the statefulness

• Works great for some settings

• However....
 ... back-up
 ... multi-threading
 ... load-balancing
ELIMINATE THE STATE
Few-Time Signature Schemes
Recap LD-OTS

Message $M = b_1, \ldots, b_n$, OWF H, $* = n$ bit
HORS [RR02]

Message M, OWF H, CRHF H’
Parameters $t=2^a, k$, with $m = ka$ (typical $a=16, k=32$)
HORS mapping function

Message M, OWF H, CRHF H’ \[* \] = n bit
Parameters \(t = 2^a, k \), with \(m = ka \) (typical \(a=16, k=32 \))
HORS

Message M, OWF H, CRHF H’ = n bit
Parameters t=2^a, k, with m = ka (typical a=16, k=32)
HORS Security

- M mapped to k element index set $M^i \in \{1, \ldots, t\}^k$
- Each signature publishes k out of t secrets
- Either break one-wayness or...

- r- Subset-Resilience: After seeing index sets M^i_j for r messages msg_j, $1 \leq j \leq r$, hard to find $msg_{r+1} \neq msg_j$ such that $M^i_{r+1} \in \bigcup_{1 \leq j \leq r} M^i_j$.

- Best generic attack: $\text{Succ}_{r\text{-SSR}}(A, q) = q \left(\frac{rk}{t} \right)^k$

\rightarrow Security shrinks with each signature!
HORST

Using HORS with MSS requires adding PK (tn) to MSS signature.

HORST: Merkle Tree on top of HORS-PK
• New PK = Root
• Publish Authentication Paths for HORS signature values
• PK can be computed from Sig
• With optimizations: \(tn \rightarrow (k \log t - x + 1 + 2^x)n \)
 • E.g. SPHINCS-256: 2 MB \(\rightarrow \) 16 KB
• Use randomized message hash
SPHINCS

• Stateless Scheme
• XMSSMT + HORST + (pseudo-)random index
• Collision-resilient
• Deterministic signing

• SPHINCS-256:
 • 128-bit post-quantum secure
 • Hundrest of signatures / sec
 • 41 kb signature
 • 1 kb keys
Signatures via Non-Interactive Proofs: The Case of Fish & Picnic

Thanks to the Fish/Picnic team for slides
Interactive Proofs

Three move protocol:

- Important that e unpredictable before sending a
- aka (Interactive) Honest-Verifier Zero-Knowledge Proofs

Non-interactive variant via Fiat-Shamir [FS86] transform
ZKBoo

Efficient Σ-protocols for arithmetic circuits

- generalization, simplification, + implementation of “MPC-in-the-head” [IKOS07]

Idea

1. (2,3)-decompose circuit into three shares
2. Revealing 2 parts reveals no information
3. Evaluate decomposed circuit per share
4. Commit to each evaluation
5. Challenger requests to open 2 of 3
6. Verifies consistency

Efficiency

- Heavily depends on #multiplications
High-Level Approach

• Use LowMC v2 to build dedicated hash function with low AND-gate-depth
• Use ZKBoo to proof knowledge of a preimage
• Use Fiat-Shamir to turn ZKP into Signature in ROM (Fish), or
• Use Unruh’s transform to turn ZKP into Signature in QROM (Picnic)
Performance

| Scheme | Gen | Sign | Verify | |sk| | pk| | |σ| | M |
|--------------|-----|------|--------|--------|--------|--------|--------|--------|--------|---------|
| Fish-10-38 | 0.01| 29.73| 17.46 | 32 | 32/64 | 116K | ROM |
| Picnic-10-38 | 0.01| 31.31| 16.30 | 32 | 32/64 | 191K | QROM |
| MQ 5pass | 1.0 | 7.2 | 5.0 | 32 | 74 | 40K | ROM |
| SPHINCS-256 | 0.8 | 1.0 | 0.6 | 1K | 1K | 40K | SM |
| BLISS-I | 44 | 0.1 | 0.1 | 2K | 7K | 5.6K | ROM |
| Ring-TESLA | 17K | 0.1 | 0.1 | 12K | 8K | 1.5K | ROM |
| TESLA-768 | 49K | 0.6 | 0.4 | 3.1M | 4M | 2.3K | (Q)ROM |
| FS-Véron | n/a | n/a | n/a | 32 | 160 | ≥126K | ROM |
| SIDHp751 | 16 | 7K | 5K | 48 | 768 | 138K | QROM |

Table 2: Timings (ms) and key/signature sizes (bytes)
Open research topics II

SPHINCS:
• More efficient few-time signatures
• Dedicated fast short, constant size input hash functions.

Fish / Picnic
• More efficient (size!!!) QROM transform
• Dedicated, more efficient proof for knowledge of preimage?
• Hash functions with lower AND-gate depth.
Thank you!
Questions?

For references & further literature see
https://huelsing.wordpress.com/hash-based-signature-schemes/literature/