
Hash-Based Signatures

Johannes Buchmann, Andreas Hülsung

Supported by DFG and DAAD

Part VIII:
Authentication Path Generation

Tree Traversal Algorithms

How to Compute Authentication Path Nodes?

TreeHash
(Mer89)

TreeHash

 TreeHash(v,i): Computes node on level v with leftmost
descendant Li

 Public Key Generation: Run TreeHash(h,0)

L0 L1 L2 L3 . . . L7

=

h

v = h = 3

v = 2

v = 1

v = 0

TreeHash

TreeHash(v,i)

1: Init Stack, N1, N2

2: For j = i to i+2v-1 do

3: N1 = LeafCalc(j)

4: While N1.level() == Stack.top().level() do

5: N2 = Stack.pop()

6: N1 = ComputeParent(N2, N1)

7: Stack.push(N1)

8: Return Stack.pop()

TreeHash

Li Li+1 . . . Li+2v-1

TreeHash(v,i)

Efficiency?

Key generation: Every node has to be computed once.
cost = 2h leaves + 2h-1 nodes
=> optimal

Signature: One node on each level 0 <= v < h.
cost 2h-1 leaves + 2h-1-h nodes.

Many nodes are computed many times!
(e.g. those on level v=h-1 are computed 2h-1 times)

-> Not optimal if state allowed

The BDS Algorithm

Motivation
(for all Tree Traversal Algorithms)

No Storage:
Signature: Compute one node on each level 0 <= v < h.

Costs: 2h-1 leaf + 2h-1-h node computations.

Example: XMSS with SHA2 and h = 20 ~25min

Store whole tree: 2hn bits.

Example: h=20, n=128; storage: 228bits = 32MB

Idea: Look for time-memory trade-off!

Use a State

Authentication Paths

Observation 1

Same node in authentication path is recomputed many times!
Node on level v is recomputed for 2v successive paths.

Idea: Keep authentication path in state.

-> Only have to update “new” nodes.

Result
Storage: h nodes
Time: ~ h leaf + h node computations (average)

But: Worst case still 2h-1 leaf + 2h-1-h node computations!
-> Keep in mind. To be solved.

Observation 2

When new left node in authentication path is needed, its children
have been part of previous authentication paths.

Computing Left Nodes

i

)1(iA)21(1 viA

v = 2

Result

Storing nodes

all left nodes can be computed with one node computation / node

2

h

Observation 3

Right child nodes on high levels are most costly.

Computing node on level v requires
2v leaf and 2v-1 node computations.

Idea: Store right nodes on top k levels during key
generation.

Result
Storage: 2k-2 n bit nodes
Time: ~ h-k leaf + h-k node computations (average)

Still: Worst case 2h-k-1 leaf + 2h-k-1-(h-k) node
computations!

Distribute Computation

Intuition

Observation:
 For every second signature only one leaf computation
 Average runtime: ~ h-k leaf + h-k node computations

Idea: Distribute computation to achieve average runtime
in worst case.

Focus on distributing computation of leaves

TreeHash with Updates

TreeHash.init(v,i)

1: Init Stack, N1, N2, j=i, j_max = i+2v-1

2: Exit

TreeHash.update()

1: If j <= j_max

2: N1 = LeafCalc(j)

3: While N1.level() == Stack.top().level() do

5: N2 = Stack.pop()

6: N1 = ComputeParent(N2, N1)

7: Stack.push(N1)

8: Set j = j+1

9: Exit

One leaf per update

Distribute Computation

Concept

 Run one TreeHash instance per level 0 <= v < h-k

 Start computation of next right node on level v when current
node becomes part of authentication path.

 Use scheduling strategy to guarantee that nodes are finished in
time.

 Distribute (h-k)/2 updates per signature among all running
TreeHash instances

Distribute Computation

Worst Case Runtime

Before:
2h-k-1 leaf and 2h-k-1-(h-k) node computations.

With distributed computation:
(h-k)/2 + 1 leaf and 3(h-k-1)/2 + 1 node computations.

Add. Storage
Single stack of size h-k nodes for all TreeHash instances.

+ One node per TreeHash instance.
= 2(h-k) nodes

BDS Performance

Storage:

n bit nodes

n bit seeds for forward secure XMSS.

Runtime:

(h−k)/2+1 leaf and

3(h−k−1)/2+1 node computations.

+(h−k) calls to FSPRG for forward secure XMSS in the worst case.

kk
h

h 223
2

3

kh 22

