Hash-Based Sighatures [l¥:X:»

Johannes Buchmann, Andreas Hulsung
Supported by DFG and DAAD

Part VIII:
Authentication Path Generation

iz
Sei, TECHNISCHE == ~ hda 3 LOEWE - Landes-Offensive
diE/= IVERSITAT % Fraun hOfer || Homscawe osustanr 2ur Entwicklung Wissenschaftlich-
) DT SIT | Skonomischer Exzellenz

Tree Traversal Algorithms & CASED

How to Compute Authentication Path Nodes?

A CERTIFIED DIGITAL SIGNATURE

Ralph C. Merkle
Xerox PARC
3333 Coyote Hill Road,
Palo Alto, Ca. 94304

merkle@xerox.com
(Subtitle: That Antique Paper from 1979)

Merkle Tree Traversal in Log Space and Time

Fractal Merkle Tree Representation and
Traversal

Markus Jakobsson!, Tom Leighton®*, Silvio Micali®, and Michael Szydlo!

Michae]l Szvdlo

RSA Laboratories, Bedford, MA 01730, mszydle@rsasecurity. com

Merkle tree traversal revisited

Johannes Buchmann, Erik Dahmen, and Michael Schneider

Technische Universitat Darmstadt
Department of Computer Science
Hochschulstraie 10, 64289 Darmstadt, Germany
{buchmann,dahmen,mischnei}@cdc.informatik.tu-darmstadt.de

Optimal Trade-Off for Merkle Tree Traversal

Piotr Berman'+*, Marek Karpinski***, and Yakov Nekrich®* *

& CASED

TreeHash

(Mer89)

TreeHash & CASED

» TreeHash(v,i): Computes node on level v with leftmost
descendant L,

= Public Key Generation: Run TreeHash(h,0)

TreeHash é CASED

TreeHash(v,i)

1: Init Stack, N1, N2

2: Forj=itoi+2v-1do

3: N1 = LeafCalc(j)

4 While N1.level() == Stack.top().level() do
5: N2 = Stack.pop()

6: N1 = ComputeParent(N2, N1)
7
8:

Stack.push(N1)
Return Stack.pop()

TreeHash & CASED

TreeHash(v,I)

[I—i+1 . I—i+2V-1

Efficiency? é CASED

Key generation: Every node has to be computed once.
cost = 2h leaves + 2h-1 nodes
=> optimal

Signature: One node on each level 0 <= v < h.
cost 2"-1 leaves + 2"-1-h nodes.

Many nodes are computed many times!
(e.g. those on level v=h-1 are computed 2"1 times)
-> Not optimal if state allowed

& CASED

The BDS Algorithm

Motivation
(for all Tree Traversal Algorithms)

& CASED

No Storage:

Signature: Compute one node on each level 0 <= v < h,
Costs: 2n-1 leaf + 2"-1-h node computations.

Example: XMSS with SHA2 and h = 20 ~25min

Store whole tree: 2"n bits.

Example: h=20, n=128; storage: 2%8bits = 32MB

Idea: Look for time-memory trade-off!

& CASED

Use a State

Authentication Paths & CASED
(o (o
(J ((J (o

Observation 1 & CASED

Same node in authentication path is recomputed many times!
Node on level v is recomputed for 2V successive paths.

Idea: Keep authentication path in state.

-> Only have to update “"new” nodes.

Result
Storage: h nodes
Time: ~ h |leaf + h node computations (average)

But: Worst case still 2P-1 leaf + 2M'-1-h node computations!
-> Keep in mind. To be solved.

Observation 2 & CASED

When new left node in authentication path is needed, its children
have been part of previous authentication paths.

Computing Left Nodes & CASED

o

T

Result & CASED

Storing {g—‘ nodes

all left nodes can be computed with one node computation / node

Observation 3 & CASED

Right child nodes on high levels are most costly.

Computing node on level v requires
2V leaf and 2vV-1 node computations.

Idea: Store right nodes on top k levels during key
generation.

Result
Storage: 2%-2 n bit nodes
Time: ~ h-k leaf + h-k node computations (average)

Still: Worst case 2h-k-1 leaf + 2h-k-1-(h-k) node
computations!

& CASED

Distribute Computation

Intuition @)\ CASED

Observation:
= For every second signature only one leaf computation
= Average runtime: ~ h-k leaf + h-k node computations

Idea: Distribute computation to achieve average runtime
in worst case.

Focus on distributing computation of leaves

TreeHash with Updates & CASED

TreeHash.init(v,i)
1: Init Stack, N1, N2, j=i, j_max = i+2"-1
2. Exit

TreeHash.update()
: If j <= j_max One leaf per update
. N1 = LeafCalc(j)

While N1.level() == Stack.top().level() do
N2 = Stack.pop()
N1 = ComputeParent(N2, N1)
Stack.push(N1)
: Setj = j+1
: Exit

O 0O NNOUTWDN -

Distribute Computation & CASED

Concept
= Run one TreeHash instance per level 0 <= v < h-k

= Start computation of next right node on level v when current
node becomes part of authentication path.

= Use scheduling strategy to guarantee that nodes are finished in
time.

= Distribute (h-k)/2 updates per signature among all running
TreeHash instances

Distribute Computation & CASED

Worst Case Runtime

Before:
2h-k-1 |leaf and 2"*-1-(h-k) node computations.

With distributed computation:
(h-k)/2 + 1 leaf and 3(h-k-1)/2 + 1 node computations.

Add. Storage
Single stack of size h-k nodes for all TreeHash instances.

+ One node per TreeHash instance.
= 2(h-k) nodes

BDS Performance & CASED

Storage:

3h +L2J—3k — 2+ 2% n bit nodes

+2h—2Kk n bit seeds for forward secure XMSS.

Runtime:
(h—k)/2+1 leaf and
3(h—k—1)/2+1 node computations.

+(h—K) calls to FSPRG for forward secure XMSS in the worst case.

