Recent Developments in Quantum Safe Crypto: Hash-based Signatures

Andreas Hülsing

Trapdoor- / Identification Scheme-based (PQ-)Signatures

Lattice, MQ, Coding

Signature and/or key sizes

Runtimes

Secure parameters

$$y_1 = x_1^2 + x_1 x_2 + x_1 x_4 + x_3$$

$$y_2 = x_3^2 + x_2 x_3 + x_2 x_4 + x_1 + 1$$

$$y_3 = \dots$$

2-10-2015

Hash-based Signature Schemes

[Mer89]

Post quantum

Only secure hash function

Security well understood

Fast

RSA - DSA - EC-DSA...

Basic Construction

Lamport-Diffie OTS [Lam79]

Message M = b1,...,bm, OWF H

* = n bit

Merkle's Hash-based Signatures

XMSS: Extended Hash-Based Signatures

draft-irtf-cfrg-xmss-hash-based-signatures-01

XMSS

Tree: Uses bitmasks

Leafs: Use binary tree

with bitmasks

OTS: WOTS+

Mesage digest: Randomized hashing

Collision-resilient

-> signature size halved

Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation

(= Building first tree on each layer) $\Theta(2^h) \to \Theta(d*2^{h/d})$

-> Allows to reduce worst-case signing times

 $\Theta(h/2) \rightarrow \Theta(h/2d)$

Since v01: Multi-target-attack-resilience

Issue:

XMSS with 256bit hash

⇒ 256bit security

Reason:

Multi-target-attacks

Solution:

Use different key & bitmask for each hash invocation

Keys & bitmasks must be public!

Solution: PRG + Seed in PK

Security:

- Not really standard model.
- Natural but new assumption ("Generating the public values using a PRG, the scheme does not get less secure if seed is published."),
- Or ROM
- Scientific paper with details and proof out soon

Preview v02

- Improved hash address format
- More precise description (endianess)
- Test vectors
- Public domain code (ref & fast)

SPHINCS: practical stateless hash-based signatures

joint work with Daniel J. Bernstein, Daira Hopwood, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, Zooko Wilcox O'Hearn

SPHINCS

- Stateless Scheme
- XMSS^{MT} + HORST + (pseudo-)random index
- Collision-resilient
- Deterministic signing
- SPHINCS-256:
 - 128-bit post-quantum secure
 - Hundrest of signatures / sec
 - 41 kb signature
 - 1 kb keys

Thank you! Questions?

For references & further literature see https://huelsing.wordpress.com/hash-based-signature-schemes/literature/